154,695 research outputs found

    Nonlinear analysis of pressure oscillations in ramjet engines

    Get PDF
    Pressure oscillations in ramjet engines have been studied using an approximate method which treats the flow fields in the inlet and the combustor separately. The acoustic fields in the combustor are expressed as syntheses of coupled nonlinear oscillators corresponding to the acoustic modes of the chamber. The influences of the inlet flow appear in the admittance function at the inlet /combustor interface, providing the necessary boundary condition for calculation of the combustor flow. A general framework dealing with nonlinear multi-degree-of-freedom system has also been constructed to study the time evolution of each mode. Both linear and nonlinear stabilities are treated. The results obtained serve as a basis for investigating the existence and stabilities of limit cycles for acoustic modes. As a specific example, the analysis is applied to a problem of nonlinear transverse oscillations in ramjet engines

    Linear Theory of Pressure Oscillations in liquid-Fueled Ramjet Engines

    Get PDF
    Pressure oscillations in ramjet engines are studied. within quasi one-dimensional linear acoustics. The flow field in the dump combustor is approximated by division into three parts: a flow of reactants, a region containing combustion products, and a recirculation zone, separated by a flame sheet and a dividing streamline. The three zones are matched by considering kinematic and conservation relations. Acoustic fields in the inlet section and in the combustion chamber are coupled to provide an analytical equation for the complex wave number characterizing the linear stability. The calculated results are compared with the experimental data reported by the Naval Weapons Center. Reasonable agreements are obtained

    Numerical calculations of pressure oscillations in a side-dump ramjet engine

    Get PDF
    Pressure oscillations in a side-dump ramjet engine have been studied, using a one-dimensional numerical analysis. The engine is treated in two parts; the inlet section, including a region of two-phase flow downstream of fuel injection, and a dump combustor. Each region is treated separately and matched with the other. Following calculation of the mean flow field, the oscillatory characteristics of the engine are determined by its reponse to a disturbance imposed on the mean fiow. Results have shown favorable comparison with experimental data obtained at the Naval Weapons Center, China Lake

    Overview of Combustion Instabilities in Liquid-Propellant Rocket Engines

    Get PDF
    N/

    Fast quantum information transfer with superconducting flux qubits coupled to a cavity

    Full text link
    We present a way to realize quantum information transfer with superconducting flux qubits coupled to a cavity. Because only resonant qubit-cavity interaction and resonant qubit-pulse interaction are applied, the information transfer can be performed much faster, when compared with the previous proposals. This proposal does not require adjustment of the qubit level spacings during the operation. Moreover, neither uniformity in the device parameters nor exact placement of qubits in the cavity is needed by this proposal.Comment: 6 pages, 3 figure

    Antiferromagnetic Alignment and Relaxation Rate of Gd Spins in the High Temperature Superconductor GdBa_2Cu_3O_(7-delta)

    Full text link
    The complex surface impedance of a number of GdBa2_2Cu3_3O7δ_{7-\delta} single crystals has been measured at 10, 15 and 21 GHz using a cavity perturbation technique. At low temperatures a marked increase in the effective penetration depth and surface resistance is observed associated with the paramagnetic and antiferromagnetic alignment of the Gd spins. The effective penetration depth has a sharp change in slope at the N\'eel temperature, TNT_N, and the surface resistance peaks at a frequency dependent temperature below 3K. The observed temperature and frequency dependence can be described by a model which assumes a negligibly small interaction between the Gd spins and the electrons in the superconducting state, with a frequency dependent magnetic susceptibility and a Gd spin relaxation time τs\tau_s being a strong function of temperature. Above TNT_N, τs\tau_s has a component varying as 1/(TTN)1 / (T - T_N), while below TNT_N it increases T5\sim T^{-5}.Comment: 4 Pages, 4 Figures. Submitted to Phys. Rev.

    Micromachined membrane particle filters

    Get PDF
    We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified

    Perturbative calculation of the scaled factorial moments in second-order quark-hadron phase transition within the Ginzburg-Landau description

    Get PDF
    The scaled factorial moments FqF_q are studied for a second-order quark-hadron phase transition within the Ginzburg-Landau description. The role played by the ground state of the system under low temperature is emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a perturbative calculation for FqF_q can be carried out. Power scaling between FqF_q's is shown, and a universal scaling exponent ν1.75\nu\simeq 1.75 is given for the case with weak correlations and weak self-interactions.Comment: 12 pages in RevTeX, 12 eps figure

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Leveraging RFID in hospitals: patient life cycle and mobility perspectives

    Get PDF
    The application of Radio Frequency Identification (RFID) to patient care in hospitals and healthcare facilities has only just begun to be accepted. This article develops a set of frameworks based on patient life cycle and time-and-motion perspectives for how RFID can be leveraged atop existing information systems to offer many benefits for patient care and hospital operations. It examines how patients are processed from admission to discharge, and considers where RFID can be applied. From a time-and-motion perspective, it shows how hospitals can apply RFID in three ways: fixed RFID readers interrogate mobile objects; mobile, handheld readers interrogate fixed objects; and mobile, handheld readers interrogate mobile objects. Implemented properly, RFID can significantly aid the medical staff in performing their duties. It can greatly reduce the need for manual entry of records, increase security for both patient and hospital, and reduce errors in administering medication. Hospitals are likely to encounter challenges, however, when integrating the technology into their day-to-day operations. What we present here can help hospital administrators determine where RFID can be deployed to add the most value
    corecore